On a characterization of certain maximal curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a characterization of certain maximal curves

where C(Fq) denotes the set of Fq-rational points of the curve C. Here we will be interested in maximal(resp. minimal) curves over Fq2 , that is, we will consider curves C attaining Hasse-Weil’s upper (resp. lower) bound: #C(Fq2) = q + 1 + 2gq (resp. q + 1− 2gq). Here we are interested to consider the hyperelliptic curve C given by the equation y = x + 1 over Fq2 . We are going to determine whe...

متن کامل

A Note on Certain Maximal Curves

We characterize certain maximal curves over finite fields whose plane models are of Hurwitz type, namely xy +y +x = 0. We also consider maximal hyperelliptic curves of maximal genus. Finally, we discuss maximal curves of type y + y = x via Class Field Theory.

متن کامل

AG codes on certain maximal curves

Algebraic Geometric codes associated to a recently discovered class of maximal curves are investigated. As a result, some linear codes with better parameters with respect to the previously known ones are discovered, and 70 improvements on MinT’s tables [1] are obtained.

متن کامل

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

Certain maximal curves and Cartier operators ∗

In general, this bound is sharp. In fact if q is a square, there exist several curves that attain the above upper bound (see [4], [5], [14] and [23]). We say a curve is maximal (resp. minimal) if it attains the above upper (resp. lower) bound. There are however situations in which the bound can be improved. For instance, if q is not a square there is a non-trivial improvement due to Serre (see ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2004

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2003.06.002